If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16x^2+48x+6
We move all terms to the left:
0-(-16x^2+48x+6)=0
We add all the numbers together, and all the variables
-(-16x^2+48x+6)=0
We get rid of parentheses
16x^2-48x-6=0
a = 16; b = -48; c = -6;
Δ = b2-4ac
Δ = -482-4·16·(-6)
Δ = 2688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2688}=\sqrt{64*42}=\sqrt{64}*\sqrt{42}=8\sqrt{42}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{42}}{2*16}=\frac{48-8\sqrt{42}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{42}}{2*16}=\frac{48+8\sqrt{42}}{32} $
| 18u-4-5u=3u-12-6 | | x+57+72+61=180 | | 3.3x-12.53=4.3 | | 2y+3y+30°=180° | | 2x+2x+5=90 | | 3x-9=+ | | -14.896=n+11.704 | | x+49+70+65=180 | | -5x+10=4x+28 | | 1/2x^2-7x=18 | | -6x-7=70+5x | | 16-2x(2x)=64 | | -2(x-9)=2 | | 6x+3-75=180 | | 7x+58+59=180 | | 4q−2q=12 | | 10c−8c=18 | | -2=3x+70 | | Y=5x^2-12x-9 | | (12x-13)+(17x-13)=180 | | -4x-8=-8x-4 | | 3^t=32 | | 6x+3-3=30-3 | | 6(x-9)=2 | | 3^t=52 | | p2–14p–15=0 | | 79+65+x+41=180 | | t^2–8t+7=0 | | -(v+1)=3 | | 19n−18n=17 | | x+44+67+76=180 | | 180=12x-25+x-3 |